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Abstract
Lipreading has witnessed a lot of progress due to the resur-
gence of neural networks. Recent work has placed emphasis
on aspects such as improving performance by finding the opti-
mal architecture or improving generalization. However, there
is still a significant gap between the current methodologies and
the requirements for an effective deployment of lipreading in
practical scenarios. In this work, we propose a series of in-
novations that significantly bridge that gap: first, we raise the
state-of-the-art performance by a wide margin on LRW and
LRW-1000 to 88.6% and 46.6%, respectively, through careful
optimization. Secondly, we propose a series of architectural
changes, including a novel depthwise-separable TCN head, that
slashes the computational cost to a fraction of the (already quite
efficient) original model. Thirdly, we show that knowledge
distillation is a very effective tool for recovering performance
of the lightweight models. This results in a range of mod-
els with different accuracy-efficiency trade-offs. However, our
most promising lightweight models are on par with the current
state-of-the-art while showing a reduction of 8 and 4× in terms
of computational cost and number of parameters, respectively,
which we hope will enable the deployment of lipreading models
in practical applications.
Index Terms: Visual Speech Recognition, Lip-reading, Knowl-
edge Distillation

1. Introduction
Visual speech recognition (VSR) or lipreading is the task of
recognising speech based on the visual stream only. Lipread-
ing has attracted a lot of attention recently mainly due to its
robustness in noisy environments where the audio signal might
be heavily corrupted.

The traditional lipreading approach was based on the
Discrete Cosine Transform and Hidden Markov Models
(HMMs) [1, 2, 3]. Recently, the focus has shifted to deep
models due to their superior performance. Such models con-
sist of fully connected [4, 5, 6, 7, 8] or convolutional lay-
ers [9, 10, 11, 12] which extract features from the mouth region
of interest, followed by recurrent layers or attention [12, 13] /
self-attention architectures [11]. Few works have also focused
on the computational complexity of visual speech recognition
[14, 15], and in any case efficient methods have trailed mas-
sively behind full-fledged ones in terms of accuracy.

The state-of-the-art approach for recognition of isolated
words is the one proposed in [16]. It consists of a 3D con-
volutional layer followed by an 18-layer Residual Network
(ResNet) [17], a Temporal Convolutional Network (TCN)
network and a softmax layer. It achieves the state-of-the-art

† The first two authors contributed equally.

performance on the LRW [12] and LRW1000 [18] datasets,
which are the largest publicly available datasets for isolated
word recognition.

In this work we focus on improving the performance of the
state-of-the-art model and training lightweight models without
considerable decrease in performance. Lipreading is a challeng-
ing task due to the nature of the signal, where a model is tasked
with distinguishing between e.g. million and millions solely
based on visual information. We resort to Knowledge Distilla-
tion (KD) [19] since it provides an extra supervisory signal with
inter-class similarity information. For example, if two classes
are very similar as in the case above, the KD loss will penalize
less when the algorithm confuses them. We leverage this insight
to produce a sequence of teacher-student classifiers in the same
manner as [20, 21], by which student and teacher have the same
architecture, and the student will become the teacher in the next
generation until no improvement observed (see Fig. 1).

Our second contribution is the proposal of a novel
lightweight architecture. The ResNet-18 backbone can be read-
ily exchanged for an efficient one, such as a version of the Mo-
bileNet [22] or ShuffleNet [23] families. Furthermore, both ar-
chitectures have a parameter controlling the width of the net-
works, effectively controlling the computational complexity of
the backbone. However, there is no such equivalent for the head
classifier. The key to designing the efficient backbones is the
use of depthwise separable convolutions (a depthwise convolu-
tion followed by a pointwise convolution) [24] to replace the
standard convolution. This operation dramatically reduces the
amount of parameters and the number of FLOPs. Thus, we
devise a novel variant of the Temporal Convolution Networks
that relies on depthwise separable convolutions instead. The re-
sulting efficient lipreading architecture is shown in Fig. 2. We
conduct experiments on replacing only the backbone, only the
back-end, and both of them, and on giving each component dif-
ferent capacity. The result is a full range of lightweight models
with varied efficiency-accuracy trade-offs.

Our third contribution is to use the KD framework to re-
cover some of the performance of these efficient networks. Un-
like the full-fledged case, it is now possible to use a higher-
capacity network to drive the optimization. However, we find
that just using the best-performing model as the teacher, which
is the standard practice in the literature, yields sub-optimal per-
formance. Instead, we use intermediate networks whose ar-
chitecture is in-between the full-fledged and the efficient one.
Thus, similar to [25], we generate a sequence of teacher-student
pairs that progressively bridges the architectural gap.

We provide experimental evidence showing that a) we
achieve new state-of-the-art performance on LRW [12] and
LRW-1000 [18] by a wide margin and without any increase of
computational performance1 and b) our lightweight models can

1 The models and code are available at https://sites.
google.com/view/audiovisual-speech-recognition
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Figure 1: The pipeline of knowledge distillation in generations
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Figure 2: (a): base architecture with ResNet18 and multi-scale
TCN, (b): lipreading model with ShuffleNet v2 backbone and
TCN back-end. (c): lipreading model with ShuffleNet v2 back-
bone and depthwise separable TCN back-end.

achieve competitive performance. For example, we match the
current state-of-the-art on LRW [16] using 8x fewer FLOPs and
4x fewer parameters.

2. Background
Knowledge Distillation: Knowledge Distillation (KD) [19]
was initially proposed to transfer knowledge for model com-
pression, so that the student capacity would be much smaller
than the teacher one. Recent studies [20, 26, 21] have ex-
perimentally shown that the student can still benefit when the
teacher and student network have identical architectures. This
naturally gave rise to the idea of training in generations. In par-
ticular, the student of one generation is used as the teacher of
the subsequent generation. This process is iterated until no fur-
ther improvement is observed. Finally, an ensemble can be op-
tionally used so as to combine the predictions from multiple
generations [20]. The training pipeline is detailed in Fig. 1.
Depthwise Seperable Convolution: Standard convolutions
rely on a kernel with dimensionality k×k×Cin×Cout, where
k is the spatial extent of the kernel and Cin and Cout are the
number of channels of the input tensor and output tensor. Thus,
the cost of the convolution is proportional to k2CinCout. In-
stead, a depthwise separable convolution separates the spatial
and the channel-wise operations to reduce the computational
cost. That is to say, it first applies a convolution with ker-
nel size k × k × Cin × 1 to perform the spatial convolution,
where channel interactions are directly ignored, and then a con-
volution with kernel size 1 × 1 × Cin × Cout to capture the
correlations between channels. Thus, cost is proportional to
k2Cin +CinCout, where typically the second term dominates.
Depthwise Seperable Convolutions are widely used in the ex-
isting efficient network architectures including Xception [24],
ShuffleNet [27, 23], and MobileNet [22, 28].

3. Towards Practical Lipreading
3.1. Architecture

Base architecture: We use the visual speech recognition
architecture proposed in [16] as our base architecture. The
details are shown in Fig. 2. It consists of a modified ResNet-18
backbone in which the first convolution has been substituted
by a 3D convolution of kernel size 7 × 7 × 5. The rest of the
network follows a standard design up to the global average
pooling layer. A multi-scale temporal convolutional network
(MS-TCN) follows to model the short term and long term
temporal information simultaneously.
Efficient backbone: The efficient spatial backbone is produced
by replacing the ResNet-18 with an efficient network based on
depthwise separable convolutions. For the purpose of this study,
We use ShuffleNet v2 (β×) as the backbone, where β is the
width multiplier [23]. In addition to the use of depthwise in
this lightweight architecture, the channel shuffle operation is
designed to enable information communication between differ-
ent groups of channels. Specifically, ShuffleNet v2 (0.5×) has
8.5× fewer parameters and 36× fewer FLOPs than ResNet-18.
ShuffleNet v2 (1.0×) has 5.13× fewer parameters and 12.1×
fewer FLOPs.
Depthwise Separable TCN: We note that the cost of the tem-
poral convolutional network in MS-TCN is non-negligible. To
build an efficient architecture, in addition to replacing standard
convolutions with depthwise separable convolutions, we reduce
the amount of heads in MS-TCN and leave only one branch with
a kernel size of 3. The architecture is denoted as depthwise sep-
arable temporal convolutional network (DS-TCN). The detailed
architecture is shown in Fig. 2.

3.2. Distillation Loss

This work aims to minimise the combination of cross-entropy
loss (LCE) for hard targets and KL divergence loss (LKD) for
soft targets. Let us denote the labels as y, the parameters of
student and teacher models as θs and θt, respectively, and the
predictions from the student and teacher models as zs and zt,
respectively. δ(·) denotes the softmax function and α is a hyper-
parameter to balance the loss terms. The overall loss function is
calculated as follows:

L = LCE(y, δ(zs; θs)) + αLKD(δ(zs; θs), δ(zt; θt)) (1)

Note that we have omitted the temperature term, which is
commonly used to soften the logits of the LKD term, since we
found that the proposed approach works well even without it.

4. Experimental Setup
Datasets: Lip Reading in the Wild (LRW) [12] and LRW-1000
[18] are the largest publicly available lipreading datasets. Both
datasets are very challenging as they contain a large number of



Method Top-1 Acc. (%)

3D-CNN [29] 61.1
Seq-to-Seq [12] 76.2
ResNet34 + BLSTM [9] 83.0
ResNet34 + DenseNet52 +

83.3
ConvLSTM [30]
ResNet34 + BGRU [31] 83.4
2-stream 3D-CNN + BLSTM [32] 84.1
ResNet18 + BLSTM [33] 84.3
ResNet18 + BGRU + Cutout [34] 85.0
Resnet18 + MS-TCN [16] 85.3

Initial Model Trained With→ Adam AdamW
Student Models Trained With→ AdamW AdamW

ResNet18 + MS-TCN - Teacher 85.6 87.0
ResNet18 + MS-TCN - Student 1 87.4 87.8
ResNet18 + MS-TCN - Student 2 87.8 87.5
ResNet18 + MS-TCN - Student 3 87.9 -
ResNet18 + MS-TCN - Student 4 87.7 -
Ensemble 88.5 88.6

Table 1: Comparison with state-of-the-art methods on the LRW
dataset in terms of classification accuracy. Each student is
trained using the model from the line above as a teacher.

speakers, have large variations in head poses, illumination and
background noise. LRW is based on a collection of over 1000
speakers from BBC programs. There are 488763, 25000, 25000
utterances of 500 target words on training, validation, and test
sets, respectively. Each utterance is composed of 29 frames
(1.16 seconds), where the target word is surrounded by other
context words. LRW-1000 is the largest Mandarin lipreading
dataset collected from more than 2000 speakers with a duration
of approximately 57 hours. It has 1000 Mandarin syllable-based
classes with a total of 718018 utterances. It contains utterances
of varying length from 0.01 up to 2.25 seconds.
Pre-processing: For the video sequences in LRW dataset, 68
facial landmarks are detected and tracked using dlib [35]. The
faces are aligned to a neural reference frame to remove differ-
ences related to rotation and scale using a similarity transfor-
mation. A bounding box of 96 × 96 is used to crop the mouth
region of interest once the centre of the mouth is located. It
should be noted that the video sequences in LRW1000 dataset
are already cropped so there is no need for pre-processing.
Training: The lipreading model is trained in an end-to-end
manner. We train the model for 80 epochs using an initial learn-
ing rate of 3e-4, a weight decay of 1e-4 and a mini-batch of 32.
We decay the learning rate using a cosine annealing schedule
[36]. We should note that all models are trained from random
initialisation, without using any external datasets.
Data Augmentation: During training, each sequence is flipped
horizontally with a probability of 0.5, randomly cropped to a
size of 88 × 88 and mixup [37] is used with a weight of 0.4.
During testing, we use the 88 × 88 center patch of the im-
age sequence. To improve robustness, we train all models with
variable-length augmentation similarly to [16]. where each se-
quence is segmented temporally at a random point prior and
after the boundary of the target word.

Method Top-1 Acc. (%)
ResNet34 + DenseNet52 + ConvLSTM [30] 36.9
ResNet34 + BLSTM [9] 38.2
ResNet18 + BGRU [34] 38.6
Resnet18 + MS-TCN [16] 41.4
ResNet18 + BGRU + Cutout [34] 45.2 †

Initial Model Trained With→ Adam
Student Models Trained With→ AdamW

ResNet18 + MS-TCN - Teacher 43.2
ResNet18 + MS-TCN - Student 1 45.3
ResNet18 + MS-TCN - Student 2 44.7
Ensemble 46.6

Table 2: Comparison with state-of-the-art methods on the LRW-
1000 dataset in terms of classification accuracy using the pub-
licly available version of the database (which provides the
cropped mouth regions). Each student is trained using the
model from the line above as a teacher. † This approach uses
the full face version of the database, which is not publicly avail-
able, in combination with cutout augmentation.

5. Results
5.1. Born-Again Distillation

In this set of experiments, we apply born-again distillation [20],
so that student and teacher have identical architectures. An en-
semble of student models is also created as suggested by [20].
Results on the LRW dataset are shown in Table. 1. We no-
tice that when we train a model without distillation, using the
AdamW optimiser [38] leads to a significant increase in perfor-
mance when compared to the Adam optimiser. However, we
find the best results after self-distillation are similar and only
have 0.1% difference no matter what the accuracy of the initial
teacher model is. This leads to a new state of the art perfor-
mance on LRW by 2.6% margin over the previous one without
an increase of computational cost. Furthermore, an ensemble of
the models reaches an accuracy of 88.6%, which further pushes
the state-of-the-art performance on LRW.

Results on the LRW-1000 dataset are shown in Table 2.
In this case, our proposed best single-model accuracy results
in an absolute improvement of 3.9% compared to the previ-
ous state-of-the-art accuracy on LRW-1000 among works only
using the publicly available data. Furthermore, the ensemble
model yields a further 1.3%, resulting in a 5.2% overall im-
provement. These results confirm that indeed inter-class simi-
larity information is crucial for lipreading.

5.2. Efficient Lipreading

One of the major limitations of current lipreading models bar-
ring their use in practical applications is that of their computa-
tional cost. Many speech recognition applications rely on on-
device computing, where the computational capacity is limited,
and memory footprint and battery consumption are also impor-
tant factors. We aim to bridge this gap by constructing very effi-
cient models that can perform on par with competing lipreading
methods. To this end, we explore replacing the ResNet-18 back-
bone and the TCN-based classifier head with efficient alterna-
tives. We chose to replace the ResNet-18 with a ShuffleNet v2
architecture [23] as preliminary experiments showed superior



Student Backbone Student Back-end Distillation Top-1 Params FLOPs
(Width mult.) (Width mult.) Acc. ×106 ×109

ResNet-18 [16] MS-TCN (3×) - 85.3 36.4 10.31
ResNet-34 [31] BGRU (512) - 83.4 29.7 18.71

MobiVSR-1 [15] TCN - 72.2 4.5 10.75

ShuffleNet v2 (1×)
MS-TCN (3×) 7 84.4 28.8 2.23
MS-TCN (3×) 3 85.5 28.8 2.23

ShuffleNet v2 (0.5×)
MS-TCN (3×) 7 83.1 27.9 1.69
MS-TCN (3×) 3 83.5 27.9 1.69

ShuffleNet v2 (1×)
TCN (2×) 7 82.7 9.1 1.31
TCN (2×) 3 84.6 9.1 1.31

ShuffleNet v2 (1×)
DS-MS-TCN (3×) 7 84.5 9.3 1.26
DS-MS-TCN (3×) 3 85.3 9.3 1.26

ShuffleNet v2 (1×)
TCN (1×) 7 81.0 3.8 1.12
TCN (1×) 3 82.7 3.8 1.12

ShuffleNet v2 (0.5×)
TCN (2×) 7 81.6 8.2 0.77
TCN (2×) 3 82.5 8.2 0.77

ShuffleNet v2 (0.5×)
TCN (1×) 7 78.1 2.9 0.58
TCN (1×) 3 79.9 2.9 0.58

ShuffleNet v2 (0.5×)
DS-TCN (2×) 7 76.2 3.5 0.58
DS-TCN (2×) 3 77.9 3.5 0.58

Table 3: Performance of different efficient models, ordered in
descending computational complexity, and their comparison to
the state-of-the-art on the LRW dataset. We use a sequence of
29-frames with a size of 88 by 88 pixels to compute the multiply-
add operations (FLOPs). The number of channels is scaled for
different capacities, marked as 0.5×, 1×, and 2×. Channel
widths are the standard ones for ShuffleNet V2, while base chan-
nel width for TCN is 256 channels.

performance over MobileNetV2 [28] and EfficientNet-B0 [39]
alternatives. In order to control the backbone complexity, we
further consider a channel width multiplier of 0.5 and of 1.

The TCN-based head classifier has the following variants:
TCN and MS-TCN. TCN indicates the vanilla TCN [40] with
kernel of size 3. We chose that kernel size as it yields compara-
ble performance to larger kernels yet has lower computational
cost, and a smaller kernel results in large accuracy drops.
MS-TCN indicates the multi-scale variant presented in [16].
Finally, for the purpose of model efficiency, we introduce
novel depthwise-separable variants of these models, noted as
DS-TCN and DS-MS-TCN respectively. We can similarly add
capacity to the different TCN variants with a width multiplier
respect to the base size of 256 channels.

We explored multiple options as teacher networks. Since
now there are higher capacity models that can be used as teach-
ers, we do not need to resort to self distillation. We explore the
following options: Use the best-performing network as teacher,
use an intermediate capacity network as teacher with either the
same backbone or head (e.g., ShuffleNet + MS-TCN as teacher,
ShuffleNet + DS-MS-TCN as student), and combining each
option with further training in generations. Since each strat-
egy works to varying degrees for the different architectures,
we use performance on the validation set to choose the best-
performing model and report the accuracy on the test partition.
However, we found that using an intermediate-capacity network
as teacher, and afterwards using distillation in generations is of-
ten the best option. Since the intermediate architecture itself is
also trained through distillation, we end up with a progressive
teacher-student sequence as in [25].

The results on LRW dataset are shown in Table 3. Remark-
ably, replacing the state-of-the-art ResNet18-MS-TCN with
ShuffleNet-DS-MS-TCN provides the same accuracy than the
previous state-of-the-art MS-TCN of [16], while requiring 8.2×
fewer FLOPs and 3.9× fewer parameters. This is particularly

Student Backbone Student Back-end Distillation Top-1 Params FLOPs
(Width mult.) (Width mult.) Acc. ×106 ×109

ResNet18 [16] MS-TCN(3×) - 41.4 36.7 15.78
3D DenseNet [18] BGRU (256) - 34.8 15.0 30.32

ShuffleNet v2 (1×)
TCN (1×) 7 40.7 3.9 1.73
TCN (1×) 3 41.4 3.9 1.73

ShuffleNet v2 (1×)
DS-TCN (1×) 7 39.1 2.5 1.68
DS-TCN (1×) 3 40.4 2.5 1.68

ShuffleNet v2 (0.5×)
TCN (1×) 7 40.5 3.0 0.89
TCN (1×) 3 41.1 3.0 0.89

ShuffleNet v2 (0.5×)
DS-TCN (1×) 7 39.1 1.6 0.84
DS-TCN (1×) 3 40.2 1.6 0.84

Table 4: Performance of different efficient models on the LRW-
1000 dataset. We use a sequence of 29-frame with a size of 112
by 112 to report multiply-add operations (FLOPs). The number
of channels is scaled for different capacities, marked as 0.5×
and 1×.Channel widths are the standard ones for ShuffleNet
v2, while base channel width for TCN is 256 channels.

remarkable since the MS-TCN is already quite efficient, having
slightly lower computational cost than the lightweight architec-
ture of MobiVSR-1 [15]. Another remarkable combination is
the ShuffleNet v2 (0.5×) + TCN model, which achieves 79.9%
accuracy on LRW with as little as 0.58 GFLOPs and 2.9M pa-
rameters, a reduction of 17.8× and 12.5× respectively when
compared to the ResNet18-MS-TCN model of [16].

The same pattern is also observed on the LRW1000 dataset,
which is shown in Table 4. ShuffleNet v2 (0.5×) - DS-TCN
(1×) provides a higher performance (4.3% absolute improve-
ment) while requiring 9.4× fewer parameters and 36.1× fewer
FLOPs than DenseNet [18]. An additional absolute improve-
ment of 1.1% is achieved in the model ShuffleNet v2 (0.5×) -
DS-TCN (1×) by using DS-TCN (1×) as the teacher model. A
visual depiction of number of parameters vs. accuracy is given
in Fig. 3.

ShuffleNet (0.5x) + TCN (1x)

ShuffleNet (0.5x) + DS-TCN (2x)

ShuffleNet (1x) + TCN (1x)

+1.7%

+1.7%

+1.8%

Figure 3: Model size-vs-Accuracy on the LRW dataset. Our
efficient networks significantly reduces the model size and out-
performs other lightweight networks.

6. Conclusions
In this work, we present state-of-the-art results on isolated word
recognition by knowledge distillation. We also investigate effi-
cient models for visual speech recognition and we achieve re-
sults similar to the current state-of-the-art while reducing the
computational cost by 8 times. It would be interesting to in-
vestigate in future work how cross-modal distillation affects the
performance of audiovisual speech recognition models.
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