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Abstract—In this paper, we present a framework for real-time
mosaicing from video sequences recorded from an uncalibrated
pan tilt zoom camera based on multiframe registration. To
this end, a new frame alignment algorithm, the direct local
indirect global (DLIG), is presented. The key idea of the DLIG
alignment is to divide the frame alignment problem into the
problem of registering a set of spatially related image patches.
The registration is iteratively computed by sequentially imposing
a good local match and global spatial coherence. The patch
registration is performed using a tracking algorithm, so a very
efficient local matching can be achieved. We use the patch-based
registration to obtain multiframe registration, using the mosaic
coordinates to relate the current frame to patches from different
frames that partially share the current field of view. Multiframe
registration prevents the error accumulation problem, one of
the most important problems in mosaicing. We also show how
to embed a kernel tracking algorithm in order to obtain a
precise and extremely efficient mosaicing algorithm. Finally, we
perform a quantitative evaluation of our algorithm, including a
comparison with other alignment approaches, and studying its
performance against interlaced videos and illumination changes.

Index Terms—Interlaced, kernel tracking, multiframe align-
ment, real-time, video mosaicing.

I. Introduction

V IDEO MOSAICING consists on generating an image
that summarizes the entire visible area of a video se-

quence. This is done by selecting a reference frame from a
video sequence and putting the rest of frames in correspon-
dence with it.

Classically, mosaics have been used for video compression.
In [1], Irani et al. described techniques of video compression
for video-storage and video transmission applications, which
consist on generating the mosaic image of the scene from
the video sequence and encoding the residuals of the frames
relative to the mosaic image. In [2], Lee et al. improved the
video coding efficiency by exploiting the layered representa-
tion inside the context of MPEG-4. There, the mosaic image
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is a layer composed by the pixels in an object visible through
the entire scene, which is called Sprite.

Besides video compression, mosaics are useful for many
other applications. For instance, mosaics are used to generate
a representation of the terrain using videos recorded from the
sky [3] or from underwater [4], for video indexing [5], for
motion detection [6], or for video surveillance [7], [8]. A
recent application built upon a mosaicing algorithm is the
generation of a dynamosaicing [9], which summarizes the
whole scene by automatically generating dynamic mosaics,
ignoring the chronological order of the actions in a video
sequence and focusing on the activities themselves.

The process of putting a frame in correspondence with the
reference frame is what is called frame alignment. Depending
on how the alignment is performed, it is possible to divide
the mosaicing algorithms present in the literature under two
different criteria. First of all, they can be divided with respect
to the information used to estimate the alignment, resulting on
a division between direct or featureless methods, and indirect
or feature-based methods [10].

Direct methods are those who use all the available im-
age pixels to compute an image-based error, which is then
optimized to compute the alignment. The results can be
accurate, but they require an already accurate initialization and
typically results in high computation costs. When the input is
a video sequence, the accurate initialization can be assumed
by using the previous alignment as an initialization. In a video
sequence, consecutive frames have a large overlapping region.
This means that the transformation that places two consecutive
frames into the mosaic are similar, what we call frame locality.

In contrast, indirect methods compute the alignment by
using a set of image locations. The point locations are selected
to have representative local image properties so they are
likely to be detected independently of the point of view
of the camera. Finally, the transformation is computed as
the one maximizing the matching between both the set of
locations over the current frame and the set of locations over
either another frame or the mosaic. Some examples of this
family are [10] and [11]. Both extract a set of scale-invariant
feature transform (SIFT) features from all the images and
then use algorithms for eliminating outliers and identifying
the correspondences between images. In particular, the first
one uses a probabilistic model based on RANSAC while the
second uses a geomorphic reverse measurement.

Feature-based methods are very interesting since they pro-
vide good performance and can estimate complex transfor-
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mations. They are suited for mosaicing from a set of images
not required to belong to a video sequence, since they do
not require an initialization as direct methods do. In contrast,
they can be computationally expensive. Furthermore, for the
case of video mosaicing, direct methods make a better use of
the frame locality property, transforming the frame alignment
problem from global search to local estimation.

The second distinction between the existing mosaicing
algorithms can be done in terms of whether each frame is put
in correspondence with the previous frame of the sequence or
directly with the mosaic. These approaches are called frame-
to-frame alignment and frame-to-mosaic alignment.

The frame-to-frame alignment approach consists on regis-
tering the current frame with the previous one, obtaining its
alignment by accumulating the inter-frame registration with
the previous alignment. This is the most common approach in
the mosaicing literature, but it has an important drawback.
Since each inter-frame registration produces a small error,
computing the alignment as the accumulation of inter-frame
registrations produces an accumulation of the error over time.
This results in a bad alignment, especially important when the
camera has loops in its trajectory. Some techniques, like [12]
and [13], use a graphical model to deal with misalignments
caused by the error accumulation. In these articles, nodes
represent frames and edges represent adjacency in time or
space. The mosaic image is generated by finding the opti-
mal path that minimizes the alignment error. However, this
approach is hardly applicable for real-time scenarios. First of
all, complexity grows over time as new frames are added,
while the minimization has to be repeated regularly. Second,
if the mosaic has to be visualized, reestimating means warping
and interpolating all the mosaic. Last, considering a reduced
set of frames for lowering the computational cost might lead
to not considering frames spatially but not temporally related.

Another possible approach is frame-to-mosaic alignment,
which consists on registering the current frame directly with
the mosaic image [14], or using instead a representation
of the mosaic (like pixel mean or pixel median for each
frame aligned). This approach received some attention as a
solution for preventing the error accumulation problem [15],
[16]. Frame-to-mosaic alignment does not require prohibitive
memory storage nor excessive computation time, but the
alignment accuracy is affected. In this approach, either the
frame has to be transformed to be matched with a mosaic
region or vice versa. Small errors in the registration over the
frame coordinates can be magnified when the registration is
transformed into the mosaic coordinates. Similarly, using the
mosaic coordinates is not a solution either. This effect is what
we call precision degeneration (see Section II-B for a more
in-depth explanation). Furthermore, the computational draw-
back associated is twofold: the mosaic needs to be explicitly
computed and the frame needs to be warped before matching
it with the mosaic. This also implies matching warped images
obtained through pixel interpolation.

The remainder of this paper is structured as follows. Section
II provides an intuitive overview of our method, explores
the limitations of the related literature, and analyzes why
our method can overcome them. Section III provides a more

detailed description of the method, paying special attention
to the DLIG alignment algorithm (Section III-B). We detail in
Section IV the experiments conducted, including a set of quan-
titative and qualitative evaluations of the proposed algorithm.
Final remarks and future work can be found in Section V.

II. Overview of the Proposed Method

A. Direct Local Indirect Global Alignment

We aim to achieve real-time video mosaicing. It is
therefore natural to use the frame locality property to reduce
the computational cost. Frame alignment is defined as a
problem of local estimation; a similar approach to that of
direct methods. But instead of computing the alignment of the
whole image, which is computationally expensive, we compute
the alignment of a discrete set of image subregions. Each of
the subregions is matched using a tracking algorithm and an
independent target model. Visual tracking is an important field
of computer vision, and many robust and efficient algorithms
have been proposed, a knowledge we take advantage of.
However, the risk of errors during the tracking should be
taken into account. For this reason, we also impose global
consistency on the set of estimations. In an ideal scenario,
the local matchings should be consistent with a global image
transformation. It should be possible to compute it as in
indirect methods, and the point matchings should be consistent
with the transformation. For this reason, we iteratively
alternate the local alignment stage with a global transformation
estimation. This last step is used to correct erroneous
trackings and to impose global consistency with respect to
the interframe transformation. This process yields robust
consistent interframe matchings. We call this methodology
direct local indirect global (DLIG) alignment method, since
the local alignment is performed like in direct methods, while
the global transformation is computed as in indirect methods.

B. Multiframe Matching

Our method performs multiframe matching as a way to
prevent error accumulation problems. We show that it is
capable of doing so while preventing the problems of frame-
to-mosaic approaches. However, it is fist necessary to provide
a more in-depth explanation of the problems associated with
frame-to-mosaic approaches.

We referred in the introduction to the problem of error
accumulation in frame-to-frame alignment approach, and
how multiframe matching through the use of graphical
models can make real-time applications unfeasible. Frame-
to-mosaic approaches alleviate such a problem, but present
other drawbacks instead. First of all, the mosaic has to be
computed explicitly. Second, we match deformed images
(meaning interpolating). Last and most importantly, it suffers
from what we called the precision degeneration problem.
Here, we want to give a more insightful explanation of this
last problem and to show how to prevent all of these problems
when performing multiframe matching.

The precision degeneration problem happens when the
coordinate system of the current frame i is very different from
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Fig. 1. Precision degeneration. Euclidean distance is equivalent to point
matching error. The circles drawn around points x′

1 and x′
2 show points at

equal distance to their central locations. The interframe distortion is almost
non-existent. In contrast, when projected onto the mosaic, they can suffer a
great distortion, which hinders frame-to-mosaic alignment.

the reference coordinate system. In this case, the computation
of the alignment based on a set of matched points becomes
unstable. If alignment Ti severely distorts the matched frame,
so it does with the errors of the matching. Therefore, a small
matching error in the mosaic can correspond to large matching
errors in frame i or its reciprocal.

More formally, given two frame points so x = x̄ + �ε,
their distance in frame coordinates is ‖�ε‖, while the
distance between their mosaic equivalents is ‖Ti(�ε)‖. Since
Ti is not an Euclidean transformation, same error ‖�ε‖ at
different frame locations can yield (very) different errors in
mosaic coordinates. Therefore, performing the estimation of
alignment i in mosaic coordinates or in frame coordinates
can yield very different estimates.

This effect is shown in Fig. 1. In this figure, two points
x′

1 and x′
2 located at frame i are shown, together with a set

of locations (circles around them) placed at a distance ε.
When performing mean square error (MSE) estimation, the
Euclidean distance is equivalent to the error, so the circles
represent points producing all the same matching error. The
problem arises when transforming these points of equal error
into mosaic coordinates, since they are transformed into
distorted ellipses.

In order to prevent these performance issues, we perform
instead a multiframe matching. More precisely, we relate
some locations typically belonging to different frames (called
reference points for frame i) to a set of locations on the
current frame i. The reference locations are selected using
the mosaic coordinate system, so we can guarantee that they
are seen in the current frame. We assume we have an initial
hypothesis of the current frame alignment T̂ 0

i . Then, we can
project the reference points into the mosaic coordinate system
using their respective alignments, and then backproject them
into the current frame through T̂ 0

i . This generates a set of
current frame locations, which are dependent on T̂ 0

i . Each of
these points is considered as the center of a image patch, which

will be used to perform the matching. At this stage, we can
use the DLIG alignment to refine this first hypothesis into a
final alignment. By following this methodology, the matching
is performed using undistorted information from the frames at
which the reference points belong. Since we do not use mosaic
aspect information, it is not necessary to explicitly build the
mosaic, deforming and interpolating patches for matching is
avoided, and the precision degeneration problem is prevented.

It is important to note that this formulation is equivalent to
considering the reference points to lay on the mosaic, since
alignments of previous frames are fixed. It is just necessary
to take into account that the visual information used to
perform their matching with points at the current frame will
be extracted from their original frames. For simplicity, we will
say these points lay on the mosaic.

As a final remark, note that this approach is only possible
because we do not perform the frame matching typical of
direct methods, but instead we split the frame information into
parts that can be related to different frames. Since the mosaic
efficiently summarizes the spatial information of the scene, it
is natural to take advantage of it in order to obtain the frames
spatially related to the current frame. But for the matching
itself, we use the original frame information.

III. Method Description

Given a sequence formed by frames {fi}i=1:N , and a refer-
ence frame fr, the aim is to compute for each frame fi the
alignment Ti that puts it in correspondence with the reference
frame. We compute alignment Ti by using two sets of points
put in correspondence, one from the current frame and another
from the mosaic. In our paper, Ti is restricted to be a 2-D
projective transformation, due to the good tradeoff provided
between flexibility and simplicity on the alignment estimation.
Thus, given a set of points X′ = {x′

j} in fi coordinates and their
corresponding points X = {xj} in the mosaic coordinates, we
compute a transformation Ti that puts in correspondence these
sets (being in our case a 3 × 3 transformation matrix1).

In the reminder of this section, we will first describe
how we estimate correspondences between frame points and
mosaic points. Afterward, the DLIG transformation estimation
is described in detail. Then, a summary of our algorithm is
provided.

A. Local Point Correspondences Using a Tracking Algorithm

Each of the reference points is put in correspondence
with a point on the current frame by using a template-based
tracking algorithm. We consider each reference point to be
the center of an image patch. Such patch is used to extract
a target representation (the model) to be used by the tracking
algorithm. Then, this model is used to match the region against
the current frame, and the center of the matched region is put
in correspondence with the reference point. We note as Ik(xj)
to an image patch within frame k centered at point xj .

1We use a 3 × 3 transformation matrix, since we only focus on 2-D
projective transformations. Nevertheless, the method can be extended to other
types of transformations, as polymorphic or piecewise affine transformations,
despite that they cannot be modeled using a 3 × 3 transformation matrix.
Note that since the alignment includes translation, we use the homogeneous
representation of points.
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More precisely, given a patch representation ϕ, matching
a template within an image consists on finding the ideal �p

so that ϕ(W(Ii, �p)) is the closest under some criterion to
the model ϕ(Ik(xj)). Here, �p contains the parameters of
a transformation W over Ii, defining the patch from where
the representation is computed, as, e.g., its center and size.
It is important to note that the matching obtained depends
on the type of transformation allowed. �p can contain the
parameters of, e.g., a translation, an affine, or a projective
transformation. It is also important to note that at each iteration
of a tracking algorithm ϕ(W(I, �p)) has to be computed. This
generally implies computing the patch warp W(I, �p), and its
computational cost depends on the tracking algorithm.

In practice, it is possible to obtain a model for the template
matching from the mosaic image, and we would obtain a
frame-to-mosaic alignment algorithm. However, to prevent the
problems linked to this approach, we compute the model rep-
resentation directly from frame information. More precisely,
provided that xj is a reference point in mosaic coordinates,
we backproject it to its original frame, which we note as o(j),
and compute the point representation using a subregion of fo(j)

centered around T −1
o(j)(xj). Therefore, the representation used is

formally defined as follows:

ϕ(xj) = ϕ̄
(
T −1

o(j)(xj)
)

(1)

where ϕ̄ is an equivalent representation of ϕ applied to a
different image, and we simplify the notation ϕ(I(xj)) as ϕ(xj).

The representation ϕ̄ depends on the tracking algorithm
used. For example, it can be the patch intensity values if
we use correlation or a kernel-weighted histogram if kernel
tracking (KT) is used. Some other tracking algorithms are
flexible regarding the representation used.

Each time a new part of the scene is observed, some new
reference points are added to the set of reference points and
their representation is computed. The definition of the set of
reference points is incremental, so it is possible to add more
but those added are always kept.

Since the information stored is just a model representation
for each reference point (typically a vector), the memory stor-
age benefit of this approach is important respect to approaches
requiring storing all the mosaic. Furthermore, at each new
frame we are using previously computed representations, so
we do not need to recompute them at each step, speeding up
the process.

Finally, it is important to remark that the properties of
the tracking algorithm used are inherited by the mosaic.
For example, a tracking algorithm incapable of coping with
varying illumination will fail in such cases, while using a
representation robust to illumination changes will boost the
performance. We will provide some examples in Section
IV, where we show the performance of different tracking
algorithms.

B. DLIG Alignment Computation

We now describe the computation of alignment Ti using the
DLIG algorithm. We need to find and put in correspondence
two sets of reference points: Xi, belonging to the mosaic, and
a set X′

i, belonging to frame i.

Algorithm 1 DLIG alignment computation

T̂ 0
i = Ti−1;1

for t ← 0 to Until convergence do2

X̄t
i =

(
T̂ t

i

)−1
Xi;3

X̄t
i → X̂t

i using a tracking step;4

X̂t
i → Wt

i ;5 (
X̂t

i, W
t
i

) → T̂ t+1
i using WMSE;6

Ti = T̂ end
i ;7

We rely on the region matching procedure described in
the previous section. However, we impose global consistency
over the estimated matchings to prevent local mismatchings
that might arise from tracking errors, or from the content of
the current frame, as, e.g., when moving objects are present.
Algorithm 1 summarizes this process, and its details are
provided in the following.

We perform an iterative estimation of Ti, starting with
T̂ 0

i = Ti−1 as the initial guess.2 Given the set of mosaic
points Xi, the first step consists on projecting them into the
current frame coordinate system using the current estimate of
the alignment, T̂ 0

i , obtaining a set of points X̄0
i =

(
T̂ 0

i

)−1
Xi

(line 3 of Algorithm 1). Due to the frame locality property, the
points X̄0

i are close to the yet unknown locations X′
i, which

we aim to estimate.
The tracking algorithm is then applied to the locations X̄0

i .
However, instead of sequentially performing a set of iterations,
we just apply one (or a small predefined set of) iteration of
the tracking algorithm. Through this step, a new estimate of
X′

i is obtained, noted X̂0
i (Algorithm 1, line 4). Furthermore,

it is possible to obtain an error associated to each one of
the estimates, inherently given by the tracking algorithm.
The particular form of such error depends on the tracking
algorithm. For example, it is possible to use the sum of square
differences between the target model and the representation of
the estimated region.

We then combine the direct local step with an indirect
global step. More precisely, the indirect global step consists
on obtaining a new estimate of alignment i by using the point
estimates provided by the direct local step. The transformation
estimate is obtained by weighting each of the local estimates
(Algorithm 1, line 5). We will define how to compute the
weights Wi in the following section, although the errors
associated to each point matching play an important role
in such definition. The weighted estimation is achieved by
using weighted MSE (WMSE) minimization. The resulting
alignment estimation is noted as T̂ 1

i . By adding the indirect
global step, the next iteration of the direct local step will be
performed over the set of points X̄1

i =
(
T̂ 1

i

)−1
Xi instead of the

points X̂0
i . In this way, the correctly estimated locations help

computing the alignment estimate, and the alignment estimate
is used to project back the mosaic points onto the current
frame, correcting possible errors obtained on the direct local
step.

2It is possible to add a dynamic model to predict the evolution of Ti and
obtain a better initial guess.
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Fig. 2. Green squares are patches centered at X̄t
i . The intensity of the color

reflects the weights used by the WMSE. Those regions over the moving car
have consistently low weight and therefore have a low impact in the alignment
computation. Upper images are four consecutive frames; the lower image
represents the corresponding mosaic.

Fig. 2 contains an example showing the robustness of our
method to moving objects and changing background. In this
sequence, the regions to be matched with moving objects yield
high errors and are correctly assigned with a low weight when
computing the alignment.

C. Mosaic Construction Using the DLIG Algorithm

Here, we provide the remaining details of our algorithm.
First of all, the mosaic is initialized as the first frame of the
sequence. Therefore, the first alignment is the identity, T1 = I3.
Afterward, a set of reference points are created using f1 at
locations placed over a regular lattice. This means a set of
locations {xj}j=1:N1 from the mosaic are selected, and their
representations ϕ(xj) are computed.

For frame i, a subset of the reference points {xi
j}j=1:Ni

are
selected. Alignment i − 1 is used to select them, and to
initialize the computation of alignment i. Thus, when projected
onto frame i, the selected reference points produce a set
{x′

j}j=1:Ni
= {T −1

i−1(xi
j)}j=1:Ni

. Now, the DLIG alignment is
computed as described by Algorithm 1.

In our case, we use two criteria to define the weights used.
The first one is the error yielded by the direct local step, noted
{εj}, and its particular form depends on the type of tracking
algorithm used. The second criterion is based on the number
of times the reference point has been successfully used, noted
as τj . The resulting form of their computation is

wj = C2 · τj ·ηj∑N

k
τk

∑N

k
ηk

where ηj = C1 · e

− Nεj∑N

k
εk

(2)

Algorithm 2 Mosaic construction using DLIG alignment
(RP stands for reference points)

Data: Video sequence F = {fi}i=1:N

Result: Mosaic image M

begin1

• T1 = I3; RP = ∅; M = f1;2

• RP ← Generate RP using f1;3

for i ← 2 to N do4

• RP ′ ← Select a subset of RP fitted by Ti−1;5

• DLIG alignment as depicted in Algorithm 1;6

• Update the RP ′ models using fi;7

• Update the mosaic M using fi;8

• RP ← Add new RPs from fi if they belong to9

new parts of the mosaic;

end10

where C1 and C2 are normalization factors. This definition
of the weights makes the estimation robust respect to moving
objects in the scene, reflected by a high error (implying low
ηj) and to unstable image regions, reflected in the value of τj .

This process is iterated until convergence. Again, any con-
vergence criterion can be used. We set two different criteria.
The first one consists on a maximum number of iterations,
imposed for preventing an excessive computational cost. The
lack of convergence can be produced by misestimates of the
DLIG algorithm, but also due to natural image situations as
moving objects or regions with low texture. We impose a
second criterion based on the lack of change in successive
iterations, which is a typical convergence criterion.

This process finally results on the estimation of alignment
Ti. Once Ti is computed, we update all the reference point
models in order to adapt them to the new conditions of the
video (e.g., changes in illumination). Any updating strategy
can be used. We opt for updating the model as a linear com-
bination of the current model and the performed estimation
[17]. Furthermore, we compute the variance of the model in
all the occasions it was observed in a frame. This value can be
used to lower the weight of badly conditioned reference points,
as, e.g., those placed in a region with varying aspect (e.g., a
tree, a part of the image with a lot of movement, and others).

The pseudocode of our mosaicing algorithm using DLIG
alignment is presented in Algorithm 2.

IV. Experimental Results

In this section, we have three main aims. The first one is to
evaluate the performance of our method using different types
of tracking algorithms. Second, we confront the performance
of the DLIG alignment with frame-to-frame and frame-to-
mosaic alignment strategies. In third place, we select the best
performing tracking algorithm and show some performance
examples. We include in our evaluation interlaced videos
and changes in illumination, since they are very common in
practical applications.

The different tracking algorithms considered are the follow-
ing: normalized cross correlation (NCC)-based tracking [18],
Lucas-Kanade optical flow (LKOF) [19], SIFT [10], and KT
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Fig. 3. Top: scheme of how the video sequences are generated (projective
pattern on the left, affine one on the right). Bottom: the images used to
generate the 16 test sequences.

Fig. 4. (a) Progressive frame from a test sequence. (b) Same frame of the
interlaced version of the video sequence.

[20]. They are selected to be representative from different
approaches to tracking and for being applied to already ex-
isting mosaicing algorithms. NCC is used as a comparison
baseline. LKOF is the basis of a large number of mosaicing
algorithms, and it is a widely extended tracking paradigms
as well. In the case of SIFT, despite not being by nature a
tracking algorithm, it can be used to find correspondences
between frames. We include it since SIFT features have shown
to be very effective when applied to mosaicing. Finally, KT has
some properties which make it especially suited for mosaicing
purposes. It is robust to small changes in the target aspect, as
those produced by lightning and small target deformations,
and it is computationally very efficient.

In order to evaluate the performance of the different mo-
saicing algorithms, we generated a set of synthetic video
sequences from large real images, simulating different camera
movements. We use synthetically created videos because it
is otherwise very difficult to obtain a ground truth allowing
a quantitative performance evaluation. More precisely, these
videos are generated by applying a transformation pattern to
2363×1073 static images of different characteristics and then
cropping a 640×480 patch from the center of the transformed
image. We have generated two different transformation pat-
terns. The first one is defined by (3). It contains a projective
warp and a translation as follows:

Ti =

⎛
⎝

1 0 −10i

0 1 0
0 0 1

⎞
⎠

⎛
⎝

cos(αi) 0 sin(αi)
0 1 0

−sin(αi) 0 cos(αi)

⎞
⎠ (3)

Fig. 5. Comparison of light changes in a long interlaced sequence recorded
using a Sony handycam DCR-PC110E. The blocks building the image
correspond to frame 150, frame 37 000, and their difference. It is important
to note the color change, which produces some differences when subtracting
the frames.

Fig. 6. (a) Region representation using different number of kernels (one,
four, or nine). (b) Projective deformation of a region produces anisotropic
kernels. It can be approximated using isotropic kernels.

where αi = −0.001πi
180 . The second pattern is defined by (4). It

contains an affine transformation, including scaling, rotation,
and translation as follows:

Ti =

⎛
⎝

0.99icos(βi) −0.99isin(βi) 5i

0.99isin(βi) 0.99icos(βi) 5i

0 0 1

⎞
⎠ (4)

where βi = iπ
180 .

The final sequences consist of 35 frames obtained by
incrementally applying the transformation patterns and another
35 frames consisting on the reverse of the first 35 frames. This
results in 70 frames per sequence, where the first frame and
the last frame match. Fig. 3 shows a scheme of how these
videos are generated.

Additionally, we created an interlaced version of each of
these sequences in order to evaluate the algorithm performance
in such conditions. It is important to note that the minimum
error to expect in interlaced videos is dependent on the camera
movement. The first frame of the sequences is not interlaced
and when compared to the rest of frames, which are already
interlaced, an error is naturally produced and propagated over
all the process (our error measure is an average of pixel
position errors). Therefore, the objective in interlaced videos is
not to have no error but instead to not accumulate further error
throughout the sequence. Fig. 4 shows a comparison between
the progressive and the interlaced version of a frame. In total,
we have 16 different video sequences for quantitative testing
purposes.

Each test is initialized using a set of reference points placed
at a regular 7×5 lattice, using patches of 70×70 pixels to
construct their representation.
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TABLE I

Alignment Error Comparison

SR stands for SIFT + RANSAC and KT for kernel tracking. The graphics show in the x-axis the frame number, from 1 to 70, and on the y-axis (ranging
from 0 to 20) the computed error in terms of mean for the frame pixels (red) and their quantized distribution (gray). See text for details on the graphic

construction. Error/Frame D. means Error/Frame Distribution.

TABLE II

KT DLIG Mosaicing Accuracy Under Two Illumination Change Patterns

I.V. stands for intensity variation. F stands for failed mosaics. The graphics are constructed like in Table I (see text for further explanation).

The results of comparing the different tracking algorithms
considered, together with a performance comparison with re-
spect to the different alignment approaches, are shown in Table
I. To quantitatively evaluate the mosaicing error, we compute
for each pixel the Euclidean distance between its location
through the estimated transformation and its real location. We
provide the mean and variance of these errors in the first
columns. This table also includes graphics summarizing the
evolution of the error along the sequence, so, e.g., it is possible
to see the error accumulation phenomenon for the case of
frame-to-frame alignment. These graphics are composed by
70 concatenated vertical histograms (one per frame), where
the x-axis represents frame number (from 1 to 70) and the
y-axis shows the error in pixel distance (from 0 to 20). Each
of these histograms is constructed by considering the error for

each pixel in the corresponding frame for all the test videos.
Darker tones of a bin represent high density of pixels having
an error corresponding to this bin. We also show over the
graphics the mean error using red dots. Note that the errors
computed are referred to the accumulated estimations and do
not refer to interframe errors.

It is possible to see from the evaluation the consistently
superior performance of the DLIG alignment. One important
aspect is that the error is not accumulated over the sequences.
In contrast, the frame-to-frame approach presents consistent
error accumulation problems. For the case of frame-to-mosaic
approaches, NCC and LKOF perform well, but the error again
increases with the sequence. For the case of frame-to-mosaic,
we use a frame to mean mosaic approach. Since the DLIG
alignment relies on the tracking performance, it is safe to say
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Fig. 7. Mosaic generated with all the sequence (2200 frames). The green line shows the camera trajectory and the dots mark the point of view each ten
frames. The color code indicates the frame, where the yellow color is used for the first frames, and the red ones for the lasts. The comparisons results from
subtracting frames 733 from 979, and from 1762 (two differences on the left) and 407 from 1223 and 1367 (the two on the right).

that the final mosaicing algorithm inherits the properties and
limitations of the tracking algorithms. The most illustrative
case is the performance with interlaced videos for SIFT and
KT. Whereas they perform very similarly for deinterlaced
videos, SIFT completely fails with the interlaced ones. This is
due to the nature of the SIFT descriptor, based on orientation
of edges, which are completely distorted in interlaced videos.
In contrast, KT performs very well with interlaced videos.
The representation used in KT, kernel-weighted histograms, is
well known for being very robust against blurring. In practice,
for KT the representations of the interlaced and deinterlaced
version of the same region are very similar.

Given the results of the performance evaluation, we adopt
the KT as the most reliable, both in interlaced and progressive
videos. It is also the less computationally demanding.

We made some further performance evaluations to decide
on the optimal parameters of the representation for KT. More
precisely, we selected the optimal number of kernels and
whether isotropic or anisotropic kernels should be used. We
tested kernel-weighted representations formed by one, four,
and nine kernels (see Fig. 6). The experimental results show
that there is an improvement between the performance between
using four kernels respect to using just 1, but instead using nine
kernels leads to almost no performance improvement, while
the computational cost grows with the number of kernels. The
use of anisotropic kernels further improve the performance
(1.186 versus 1.015 of average error, respectively). In order to
match the same scene region as seen in two different frames,
it would be necessary to consider projective transformations.
Therefore, the kernels responsible for creating the patch rep-
resentation should undergo the same transformation, leading
to anisotropic kernels. However, it is possible to approximate
them using isotropic kernels, as depicted in Fig. 6. It is
therefore reasonable that the obtained results are less accurate.
But anisotropic kernels present a computational drawback,

since the computational cost growth is significant. When using
isotropic kernels instead, it is possible to generate look-up
tables. A look-up table is a large set of precomputed kernels
at different scales, so whenever a kernel suffers a scaling, it is
only necessary to look for it on the table instead of computing
its values again. This is possible when the kernels are isotropic,
since only the scale can change. For anisotropic kernels
instead, the variability is too high, since an anisotropic kernel
is defined by three parameters instead of the one required for
isotropic kernel. If the computational cost is not a restriction,
the use of anisotropic kernels would fit best. In our case, we
use isotropic kernels because of the real-time requirement.

In order to test the capability of the DLIG algorithm to
resist illumination changes, we designed a modification of
the eight synthetic test videos described before. For each of
these frames, a random illumination variation pattern was
added. The results of this experiment are shown in Table
II. We performed two different experiments depending on
the illumination pattern added (numbers refer to a scale of
[0, 255]). In the first one, uniform global noise was added
to the frame, where the value of the illumination change
was randomly selected within an interval following a uniform
distribution. These results are shown in the left part of the
table. It is important to note that having an interval of
[−10, 10] means the illumination change between two con-
secutive frames might be of up to 20. The second pattern
used dividing the image in 16 blocks, and each of them was
transformed using a uniform illumination pattern, again with
a value randomly selected using a uniform distribution within
a range. It is worth mentioning that these tests are performed
without applying any illumination normalization to the frames,
which would be recommended for the final application.

It is possible to see that for the block illumination pattern,
the results are better than for the global illumination one. Since
the intensity of the variation is random, it is expected that some
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of the 16 blocks have a smaller illumination change. In these
cases, the alignment can rely more on such regions.

The robustness of the alignment method to illumination
changes depends on the properties of the tracking algorithm.
For these experiments, we used 12-bin kernel-weighted his-
tograms. In practice, the bin width is of about 20. This
implies robustness against illumination changes smaller than
the width of the bin (like for those changes within the
[−5, 5] range), while for comparable or larger illumination
changes the matching becomes unstable.

We also tested the performance of our method in a large
sequence with slow changes in the illumination, so the perfor-
mance depends to a large degree on the ability to adapt the
model to the ongoing changes. In Fig. 5, we combine blocks
of frame 150, frame 37 000, and their difference. It is possible
to see the precision of the matching performed, even when
there are 36 850 frames in-between, which at 25 f/s adds up to
more than 25 min. Again, no illumination normalization was
used in this sequence.

In order to provide a qualitative vision of the performance
of our method, we show some experiments obtained with
real sequences. The first experiment shows that our method
does not accumulate error when building a mosaic from
large sequence. The obtained result is shown in Fig. 7. We
used a sequence containing a typical surveillance situation,
where the camera rasterizes a scenario, with mostly panning
movement but not only. The trajectory of the camera is
shown over the mosaic. The sequence is composed by 2200
interlaced frames recorded using a Sony handycam DCR-
PC110E with a resolution of 640×480 pixels, and the video
is interlaced. The experiment consists on showing regions of
different frames which share the same mosaic coordinates. If
the mosaic is perfect these regions should be equal (except
for illumination changes or moving objects). For example,
frames 733, 979, and 1762 have a significant overlap, and
the difference between the overlapping parts is shown. The
same is done with frames 407, 1223, and 1367. The difference
between these frames is small, even taking into account that
the video is interlaced. Only regions with moving objects show
a significant difference.

Some more qualitative examples are shown in Fig. 8. The
figure shows the mosaics obtained and summarizes the field
of view evolution within the sequences.

A. Memory Requirements and Computational Cost

Our algorithm is capable of performing real-time video mo-
saicing, considering that the mosaic is not explicitly computed
nor visualized. In order to achieve real time also for these
functionalities, it is necessary to use multithread programming.
For example, [21] achieve it by using CUDA language and two
parallel threads.

We have built a C++ single-thread implementation of this
algorithm capable or running in real time for videos with
high resolution (which we will provide through the author’s
web). For example, we are capable of processing a 720×512
resolution video, excluding frame load, at 48.04 frames per
second using a PC with a Core i7 920 (2.66 GHz) CPU, or
at 28.98 frames per second on a laptop with a Core 2 Duo

Fig. 8. Top example shows a 256 frames interlaced video, recorded from
an UAV with a resolution of 720×576 pixels. The bottom example is a 1000
frames progressive video, recorded using a handheld photo camera (Cannon
ixus 750) with a resolution of 640×480 pixels. A trapezoid is plotted every
ten frames showing the field of view, while the color of the trapezoid indicates
time, where yellow mark the first frame and red the last one.

T7200 (2 GHz) CPU. Another important property is that the
computational cost remains constant with time.

The memory storage requirements are very small. The
amount of stored data grows linearly with respect to the extent
of the mosaic, since only the representation of the reference
points has to be stored, being each of these representations
just a vector.

V. Conclusion and Future Work

We have presented the DLIG alignment which combines the
precision of direct methods and the simplicity when estimating
complex transformations of indirect methods. We also have
shown how to prevent the error accumulation problem and
the precision degeneration problem by using a multiframe
alignment computation.

Additionally, by embedding a tracking algorithm, we take
profit of the frame locality property. We also have shown
that it is possible to deal with incorrect matchings by using
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weighted alignment estimation, and how to deal with back-
ground changes using a model update strategy.

We have tested different tracking algorithms, concluding
that KT is the most suited. It can deal with progressive and
interlaced videos with high accuracy and low computational
cost and memory requirements.

As future work, we will introduce new target representations
robust to lightning changes. Also we will extend the current
work to situations with parallax. To this end, we should be
capable of identifying two different clusters in the movement
estimation of the reference points.
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