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Abstract

In this paper we propose the very first weakly supervised approach for detecting fa-
cial action unit temporal segments. This is achieved by means of behaviour similarity
matching, where no training of dedicated classifiers is needed and the input facial be-
haviour episode is compared to a template. The inferred temporal segment boundaries of
the test sequence are those transferred from the template sequence. To this end, a para-
metric temporal alignment algorithm is proposed to align a single exemplar sequence to
the test sequence. The proposed strategy can accommodate flexible time warp functions,
does not need to exhaustively align all frames in both sequences, and the optimal warp
parameters can be found by an efficient Gauss-Newton gradient descent search. We show
that our approach produces the best results to date for the problem at hand, and provides
a promising opportunity to studying facial actions from a new perspective.

1 Introduction

Facial expression recognition has been an active topic in computer vision due to its wide
applications in human-computer interaction, security, and health care. The Facial Action
Coding System (FACS) [6] is one of the most comprehensive and objective ways to describe
facial expressions. It associates facial expressions with actions of muscles that produce
them by defining a set of atomic movements called Action Units (AUs). The dynamics
of facial expressions are crucial for the interpretation of human facial behaviour [2]. The
most common way of modelling facial dynamics is by detecting the boundaries of temporal
segments (namely neutral, onset, apex and offset) of each AU activation. This article presents
a method for automatic detection of AU temporal segments in a novel way, by means of
behaviour similarity matching, where no training of dedicated classifiers is needed and the
input facial behaviour episode is compared to a template for similarity measurement.

The temporal segments are defined as the increasing, stabilising, and relaxation of the
facial muscle related to an AU. They are therefore by definition dynamic events that cannot
be effectively analysed at a frame level. More formally, if we consider the intensity of an
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action unit as a function depending on time, then analysing the temporal segments corre-
sponds to studying the sign of its derivatives. As a consequence, we intend to reason about
the temporal segments of an AU by analysing the facial action as a whole.

The majority of methods related to automatic analysis of AUs break the problem down
so that the patterns used for learning relate only to a single frame. AU detection is typically
attained by training a frame-level binary classifier for the targeted AU, combined with infor-
mation on temporal correlation of the data, e.g. by using a graphical model like Conditional
Random Field (CRF) [15] or Hidden Markov Model (HMM) [14]. Some works also propose
to use features encoding temporal information. For example, [12] proposed to use motion
features, designed to capture the flexible face motion pattern typical of the target AU, while
[10] and [13] proposed to use dynamic appearance descriptors to this problem. The latter
captures the appearance of a spatio-temporal volume defined as a temporal neighbourhood
of a frame, therefore having enough information to reason about the AU temporal segments.

Here we propose the very first weakly supervised approach to encoding facial behaviour
dynamics. More specifically, we formulate the “behaviour similarity problem” in which the
aim is to address the question “are these two behaviours similar?” instead of “what is the
displayed behaviour?”. Pioneering efforts to address such research questions in areas such
as face verification [8] and human bodily action recognition [7] have been recently reported.
However, the concept of facial behaviour similarity has not been previously defined in the
literature. The main value of such an approach is that it could represent the solution to the
long-standing problem in machine analysis of facial behaviour – the lack of annotated data
to learn from. To wit, in contrast to the standard approach, in which machine learning al-
gorithms are trained using (usually unavailable or excessively expensive) large amounts of
facial recordings manually annotated in terms of the target behaviour (e.g. offset of smile,
onset of blink, apex of eyebrow raise, etc.), in the behaviour-similarity-matching paradigm,
minimal annotation of training data is needed (it is only required to pinpoint “typical” exam-
ple(s) of the target behaviour) and “templates” of the target behaviour are compared to the
currently observed behaviour for similarity measurement.

To this end, a parametric temporal alignment algorithm is proposed to align between
a single exemplar of the target action and the test sequence. The Dynamic Time Warping
[11] and related methods are the de facto standard for computing an explicit time alignment.
However, they show some inherent restrictions that hinder its application to our problem,
such as the requirement to align the full sequences, and the lack of flexibility of the time
warp function. We propose a novel parametric temporal alignment approach by extending
the framework in [5]. In [5], the authors define a linear parametric time warp and find the
optimal parameters though a gradient descent strategy. The major limitation of this method-
ology is its reliance on frame interpolation, and the coarseness of the numerical approxima-
tions necessary to compute the derivatives. We extend here this method to accommodate for
a more general family of time warp functions. Further, we combine this with the framework
presented in [17], which can be used to avoid frame interpolation and to obtain analytical
approximations of the derivatives of the frame appearance with respect to time. While the
authors of [17] only considered temporal scaling and translation, we propose here richer tem-
poral transformations that can account for the intra-action structure. We also substitute the
sliding window exhaustive search approach by an efficient Gauss-Newton gradient descent
method. Finally, two novel alignment strategies tailored to the problem at hand are provided.

The remainder of this paper is organised as follows. The problem at hand is formally
stated in Sec. 2. Then for completeness, the work of [17] is reviewed in Sec 3. Sec. 4
defines specific loss and warp functions for the problem of AU temporal segment detection
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and finally the Gauss-Newton parameter search is presented in Sec. 5 .

2 Problem formulation
Our aim is to find the boundaries of the AU temporal segments by aligning the test sequence
with a sequence containing the activation of the target AU with known temporal segment
boundaries. More specifically, we assume the existence of one such sequence, to which
we refer to the template sequence, noted Xtmpl = {xtmpl

1 , . . . ,xtmpl
n }1. For example, Xtmpl

might contain a full episode of an AU so that the onset, apex and offset of the AU are
fully included in the sequence. Assume as well that the temporal boundaries of each of the
temporal segments within the template sequence are known. Our approach relies on finding
an explicit temporal alignment between the template sequence and the test sequence, and
then transferring the temporal boundaries from the template sequence to the test sequence.
This is a totally novel way of tackling this problem by behaviour similarity matching, being
therefore one of the main contributions of this work.

We also present a novel parametric temporal alignment algorithm to align two sequences.
To this end, we consider a family of possible temporal warp functions, W , parametrised by
means of θ . Then temporal alignment results in warping one sequence onto the other by
means of the function W (−;θ). For example, if we consider W to be a linear warp, and we
parametrise it using translation and speed (scale) parameters, then a time stamp i is warped
into W (i;θ) = θ1i+θ2, aligning frame i from one sequence to frame W (i;θ) from the other.
If we aim to warp the template into the test sequence, we can define the alignment error as
the accumulation of the frame-to-frame alignment errors as

∑
i
L
(

xtmpl
i ,x∗ (W(i;θ))

)
(1)

where x∗ (W(i;θ)) notes the appearance of the test sequence at timeW(i;θ). The temporal
alignment results from minimising this loss w.r.t. the parameters θ .

It is clear however that x∗ (W(i;θ)) is typically unobserved, and that frame interpolation
is thus required for its computation. In order to overcome this problem, we propose to make
use of the framework presented in [17]. In particular, this framework proposes a graph em-
bedding technique that, given a sequence X, defines a continuous and differentiable function
X (t), t ∈ R that can be easily evaluated and that provides an approximation of the original
frames at corresponding time stamps, i.e., X (i)≈ xi, i = 1, . . . ,n.

3 Graph embedding representation
For completeness, we review in here the graph embedding framework proposed in [17]. The
authors make use of the Laplacian eigenmaps technique [4] to find the projection of a set of
data points onto a lower dimensional space, so that the projected points respect the distances
within the original space with respect to neighbouring points. Neighbouring relations are
established by means of a graph, so nodes correspond to data points, and edges connect
two nodes if their corresponding points are considered to be neighbouring. Given a graph,

1We use bold lower-case symbols to note vectors (understood as column vectors), bold upper-case symbols to
denote matrices, and calligraphic upper-case symbols to denote functions
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the mapping of the original points results from the computation of the eigenvectors of the
Laplacian of the graph. The Laplacian is defined as matrix L=D−W, where Di,i =∑ j Wi, j,
and Wi, j denotes the weight of the edge between nodes i ad j (for unweighted graphs Wi, j =
1 if the edge exists, 0 otherwise). The projected points, yi, minimise ∑

n
i, j(yi−y j)

2Wi, j. It is
interesting to note that this technique directly yields the projected points, while the explicit
mapping between the original data and the projected one is not computed.

In here a sequence is represented as an unweighted undirected chain graph. Because of
the specific case of graph topology considered, it is possible to show that the eigenvectors of
the Laplacian can be computed as the following set of trigonometric functions

en
k(u) = sin(πku/n+π(n− k)/2n) (2)

where u = 1,2, . . . ,n, n being the number of frames in the sequence, and k = 1,2, . . . ,n−1.
Then the projection of the i-th datapoint, xi, can be computed as the i-th elements of the

eigenvectors. By performing a simple variable substitution so t = u/n in the above equation,
we can write:

yi =
(
en

1(t = i/n), . . . ,en
n−1(t = i/n)

)
(3)

That is to say, if the eigenvectors are stored as columns in a matrix, then the rows of
the matrix are the points projected into the lower-dimensional space. However, due to the
parametric form of the eigenvectors, this definition can be extended to values of t that do not
correspond to the original frames in the sequence

Y(t) =
(
en

1(t), . . . ,e
n
n−1(t)

)
t ∈ [0,1] (4)

By this definition, Y(t) is a parametric one-dimensional curve within Rn−1, and it is a
parametric continuous representation of the action.

The rest of the framework is based the explicit computation of the linear mapping, which
is done following the derivations in [9] and, on inverting this mapping as to be able to back-
project any point of the curve back into frame space. The reader is referred to [17] for further
details. This results in a linear function

X (t) = AY(t)+ x̄ (5)

where X (i/n)≈ xi, and where x̄ denotes the mean frame in the sequence. That is to say, we
are capable of synthesising the in-between-frames appearance as cheaply as evaluating the
trigonometric function Y(t) and multiplying the outcome by a matrix. As warned in [17], it
is assumed that the data points xi are linearly independent. This assumption usually holds
when dealing with high-dimensional data such as images.

4 Proposed warp functions
In here we describe the proposed parametric alignment algorithm. To this end, we need to
specify the family of valid warping functions, W , and the loss function employed. We define
two different alignment strategies:
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Model 1: This first model considers the template to be a representative instance of the
full activation process of the target AU. Each segment is composed of non, nap and noff
frames. It is also assumed that the transition points between stages are known.

As shown in Fig 1, A piecewise linear model is used to map the template into a sub-
sequence of the test sequence. More specifically, θ is a 4-dimensional parameter vector
indicating the points within the test sequence to which the phase limits are aligned to. In
this case it is necessary to project the test sequence, obtaining the function X ∗(t). The loss
function is defined as

θ̂ = argmin
θ

n

∑
i
‖xtmpl

i −X ∗ (W (i;θ))‖2
2 (6)

where W (i;θ) is defined as:

W (i;θ) =


θ2−θ1

non
i+θ1 : θ1 ≤ i < θ2

θ3−θ2
nap

i+θ2 : θ2 ≤ i < θ3
θ4−θ3

noff
i+θ3 : θ3 ≤ i≤ θ4

(7)

Model 2: Our first model aligns the full exemplar to the test sequence despite both AU
potentially reaching different amplitudes. In other words, the maximum AU intensity levels
in both sequences is in general different. Now we propose a model capable of accounting for
this variation. To this end, we consider a template that contains an AU activation from the
neutral to the apex. That is to say, the apex and offset frames are not included. Furthermore,
the template exemplar should attain a high-intensity apex. Similarly as before, the warp is
defined to be piecewise linear. However, we include a variable that implicitly accounts for
the maximum intensity of the test sequence. Thus, θ is 5-dimensional. Furthermore, instead
of aligning the template to a sub-sequence of the test sequence, we align a sub-sequence of
the template to the full test sequence. More specifically, we project the template sequence to
obtain the function X tmpl(t) and use the loss function defined as:

θ̂ = argmin
θ

m

∑
i
‖X tmpl (W (i;θ))−x∗i ‖2

2 (8)

where the warp W (i;θ) function given by the following piecewise function:

W (i;θ) =


0 : i < θ1 or θ4 ≤ i

θ5
θ2−θ1

(i−θ1) : θ1 ≤ i < θ2

θ5 : θ2 ≤ i < θ3

− θ5
θ4−θ3

(i−θ3)+θ5 : θ3 ≤ i < θ4

(9)

As we can see in Fig. 1, we align a portion of the template sequence until a point delim-
ited by θ5. Ideally, at this point the template sequence should be of the same intensity as the
apex of the test sequence. Then, the apex segment of the test sequence is aligned to the same
point of the template sequence. Finally, the offset corresponds to aligning the same sub-
sequence of the template we used for the onset, but traversed backwards. Under this model,
any frame of the template beyond the one defined by θ5 is not used in the alignment, while
the offset is restricted to be a mirrored version with different speed of the onset segment.
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θ1 θ2 θ3 θ4

θ1 θ2 θ3 θ4

θ5

Template:

Test sequence:

Test sequence:

Template:

Projection
Projection

Figure 1: Depiction of the temporal alignment strategy for both of the models presented here
(left: model1, right: model2).

5 Gauss-Newton parameter search

The temporal alignment results from the minimisation of the loss function with respect to
the warp parameters. In order to minimise the expression, we follow a gradient descent
procedure parallel to that in [3]. The differentiability of the loss function w.r.t. the warp
parameters is guaranteed by the smoothness of Y and W . We use the shorthand L(θ) to
refer to the loss function specified by Eq. 6 (the derivations in the case of the other model
are equivalent).

The Gauss-Newton gradient descent approach only requires the computation of the Ja-
cobian of the loss function, ∇L(θ) =

(
∂L(θ)

∂θ1
, . . . , ∂L(θ)

∂θn

)
. It can be computed as follows.

∂L(θ)
∂θ j

= 2
n

∑
i=1

(
xtmpl

i −X ∗(W(i;θ))
)

∂

∂θ j
X ∗(W(i;θ)) (10)

and, recalling Eq. 5, we only need to compute

∂X ∗ (W (i;θ))

∂θ j
= A∗

∂Y (W (i;θ))

∂θ j
(11)

and

∂Y(W (i;θ))

∂θ j
=

∂Y(t)
∂ t

∣∣∣∣
W(i;θ)

∂W (t;θ)

∂θ j
(12)

where ∂Y(t)
∂ t

∣∣∣
W(i;θ)

refers to the evaluation of the function ∂Y(t)
∂ t on t =W (i;θ). Finally,

recall from Eq. 4 that Y(t) is expressed in terms of the functions en
k(t). Therefore, the only

thing left to be computed is:
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∂

∂ t
en

k(t) = kπcos(kπt +π(n− k)/2n) (13)

This last equation shows that, remarkably, the derivatives of X ∗(t) are computed analyt-
ically, therefore not requiring any numerical approximation.

Now we are in the position of defining the iterative gradient descent procedure. Given
the current estimate of the parameters, noted θ (it), and by noting J

θ (it) = ∇L(θ (it)), then the
new estimate of the warp parameters can be expressed as:

θ
(it+1) = θ

(it)−
(

Jt
θ (it)Jθ (it)

)−1
Jt

θ (it)r
(

θ
(it)
)

(14)

where r
(

θ (it)
)
= (r1, . . . ,rn), and ri = xtmpl

i −X ∗(W(i;θ (it))).

6 Experiments
Dataset: In this paper, we use the MMI database. It contains 264 videos of 10 subjects
fully FACS-coded in terms of AU activation and temporal segments by two FACS experts.
Following the previous related studies, only sequences that have the target AUs activated are
considered for testing. Other datasets with annotated temporal segments include the Cohn-
Kanade (CK) database and the SAL dataset. However, the offset segment is not included in
the CK database and very few sequences of the SAL dataset is annotated in terms of temporal
segments. Therefore they are not used in this paper.
Preprocessing: This paper focuses on mouth-related AUs as they cover most facial actions
(15 out of 32). In order to remove variability due to rigid motions of the head such as trans-
lation, scaling and in-plane head rotations, we pre-process the image frames in the following
way. The first step is to localise the facial landmarks in every frame of the sequence. To this
aim the work presented in [1] is used. A Procrustes transformation (i.e. a combination of
translation, rotation and isotropic scaling) is then computed by aligning the coordinates of
the mouth landmarks to a set of anchor points. After that the mouth region are cropped and
resized to 30×50 pixels.
Experiment setup: For each AU, the template with the maximum intensity is selected from
the activated sequences. These templates are then aligned to the test sequences following
both our models. The alignment parameter θ is initialised by independently aligning the
onset and offset segments. The only constrain is that the offset always occurs after the onset.
To this end, instead of trying to find a global minimum when the alignment is performed,
all the local minimums obtained by aligning the onset and offset template are kept, and the
pair yielding the lowest combined alignment error is used to infer the initial boundary of
the actions. Additionally, the parameter θ5 controlling the intensity magnitude of model 2 is
initialised to 0.5.
Experimental results: Table 1 summarises the per AU performance for the detection of the
AU temporal segments, computed on the MMI database. The table includes the performance
for both of the models presented in Section 4, showing the superior performance for the
detection of each of the temporal segments using the second model. This is unsurprising,
however, given the extra capability of the second model to handle AU intensity differences.
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Table 1: F1-measure for the frame-level classification of the AU temporal segments on the MMI
database. n is the number of activated sequences. F1act is the F1-measure after converting the labelling
into a binary labelling of AU activation. Results shown are for model 1 / model 2

AU n Neutral Onset Apex Offset F1act
10 14 92.19 / 92.40 57.55 / 55.33 82.09 / 84.10 60.64 / 59.63 83.46 / 87.65
12 18 86.26 / 92.24 67.51 / 65.14 84.45 / 77.55 75.73 / 74.49 83.04 / 88.33
13 9 95.38 / 84.40 57.14 / 49.17 95.24 / 79.51 76.19 / 65.10 95.71 / 90.38
14 16 81.77 / 86.71 56.61 / 59.60 71.58 / 81.24 41.60 / 68.42 91.67 / 91.73
15 12 80.69 / 87.24 70.07 / 62.62 89.70 / 81.92 59.69 / 53.12 72.91 / 74.16
16 13 89.83 / 87.67 60.43 / 58.47 75.60 / 76.57 62.40 / 52.37 83.97 / 83.88
18 21 94.74 / 95.95 28.57 / 53.88 90.91 / 86.49 57.14 / 61.67 75.65 / 79.62
20 11 69.97 / 73.38 36.41 / 38.04 64.32 / 73.04 37.96 / 33.46 71.09 / 70.41
22 10 66.25 / 70.26 48.91 / 51.12 64.81 / 82.43 44.60 / 57.72 84.83 / 86.28
23 12 90.68 / 84.45 53.30 / 46.97 81.54 / 75.42 55.46 / 46.71 55.52 / 63.30
24 18 76.68 / 81.58 57.61 / 51.80 72.81 / 83.50 50.24 / 62.89 51.26 / 59.59
25 44 93.62 / 90.94 51.21 / 52.38 79.22 / 80.23 57.78 / 69.40 94.27 / 88.34
26 25 71.16 / 83.88 42.76 / 49.96 70.47 / 80.73 50.23 / 58.24 72.00 / 72.03
27 13 92.42 / 92.99 63.86 / 85.07 86.77 / 76.81 68.38 / 43.55 63.67 / 84.97
28 30 73.63 / 84.07 60.33 / 65.27 73.42 / 76.66 70.01 / 77.54 88.48 / 88.61

AVG - 83.42 / 85.88 54.15 / 56.32 78.86 / 79.75 57.87 /58.95 77.83 / 80.62

Test sequence:

Ground truth:

Prediction:

Aligned template:

Template:

Figure 2: Illustration of the results of the temporal alignment using model 2, and a compari-
son of the temporal segment detection respect to the ground truth

The F1-measure is used to compute performance. Furthermore, we show results when turn-
ing the prediction on the temporal segments into a prediction of the AU activation. That is to
say, each neutral frame is labelled as 0, while non-neutral frames are labelled as 1. Among
the AUs considered, AU23 (lip tighten) and AU24 (lip pressor) have the lowest detection rate
in average. This is logical because the appearance changes in these two AUs are very subtle.
The poor performance for AU20 (lip stretcher) and AU22 (lip funneler) is likely to be caused
by the fact that both AUs cause variations in the mouth shape (elongation and shortening
respectively) that are diminished by the mouth size normalisation step.

An illustration of the detection process is shown in Fig. 2. We show on it how a template
is aligned to the test sequence, yielding a prediction on the temporal boundaries, which are a
precise approximation of the ground truth. It also demonstrates that the potential of aligning
the test sequence to the template although the test sequence does not reach the maximum
intensity (when using model 2).

We also show a performance comparison of our method with respect to other state-of-the-
art approaches. Table 2 offers a direct comparison of our method to earlier works reporting
results on the same dataset. For a fair comparison, the results are computed over the 15
mouth-related AUs. As we can see, the models proposed in this article outperform all the
existing works. It is important to note that, as opposed to other methods, we only use one
exemplar of the action to produce these results and no other training is needed.



JIANG et al.: PARAMETRIC TEMPORAL ALIGNMENT FOR FACIAL ACTION TEMPORAL SEGMENTS DETECTION 9

Table 2: Comparison of AU temporal segment detection methods on the MMI database. F1act is the
F1-measure after converting into AU activation.

Systems Neutral Onset Apex Offset F1act
Model1 83.42 54.15 78.86 57.87 77.83
Model2 85.88 56.32 79.75 58.95 80.62

Jiang et al. 2013[10] 78.50 53.38 72.12 48.73 67.53
Valstar et al. 2012[14] 76.60 56.75 69.38 48.87 -

Koelstra et al. 2010[12] - - - - 62.5

Figure 3: Performance on temporal segment detection when using the proposed models and
GTW [16] for temporal alignment

Finally, we experiment whether the proposed alignment method performs better than
previously existing temporal alignment methods. We show a direct comparison with the
Generalised Time Warp (GTW) [16]. This is the best-performing time warping methodology
and the most closely related to the alignment method proposed here. This is due to the
family of parametric functions used such that the produced alignment is smooth without
a requirement to exhaustively align both sequences (although it tends to do so), and the
estimation of the alignment parameters through gradient descent. However, such method
is still unable to encode intra-sequence structure into the alignment process. These results
are shown in Fig. 3, where the superior performance of the proposed alignment method,
especially for the onset phase, can be observed.

7 Conclusions
We have presented a new method for the detection of the facial action temporal segments
by facial behaviour similarity matching, where no training of dedicated classifier is needed.
This method could potentially alleviate long-standing problem in machine analysis of facial
behaviour – the lack of annotated data to learn from. To this end, we perform an explicit
temporal alignment with a novel parametric technique. This approach can accommodate a
larger variety of warp functions and an efficient Gauss-Newton gradient descent search. We
show that for the problem of AU temporal segment detection, our approach produces the best
results to date.
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